您现在的位置是:首页 >科技 > 2025-03-25 06:30:08 来源:

📚sklearn中的cross_val_score交叉验证🧐

导读 在数据科学领域,模型评估至关重要!`cross_val_score` 是 `scikit-learn` 中一个非常实用的工具,它可以帮助我们快速完成交叉验证,从...

在数据科学领域,模型评估至关重要!`cross_val_score` 是 `scikit-learn` 中一个非常实用的工具,它可以帮助我们快速完成交叉验证,从而更准确地评估模型性能。🤔

首先,什么是交叉验证?简单来说,它是一种通过将数据集分成训练集和验证集多次重复来减少模型过拟合风险的方法。而 `cross_val_score` 就是实现这一过程的利器!🎯

使用时,你需要提供一个模型(如线性回归、随机森林等)、数据集以及评估指标(如均方误差或准确率)。它会自动帮你划分数据并运行多次实验,最后返回每轮的分数列表。💡

举个栗子:假设你正在训练一个预测房价的模型,只需几行代码即可完成 5 折交叉验证!👇

```python

from sklearn.model_selection import cross_val_score

from sklearn.datasets import load_diabetes

from sklearn.linear_model import LinearRegression

加载数据

data = load_diabetes()

X, y = data.data, data.target

创建模型

model = LinearRegression()

执行交叉验证

scores = cross_val_score(model, X, y, cv=5)

print(scores)

```

交叉验证不仅能提高模型泛化能力,还能帮助我们更好地理解数据特性。💪 🌟

机器学习 Python 数据分析